A musical agent learns to generate a two-part invention using SARSA. SARSA is a reinforcement learning technique that learns an optimal policy by sampling the environment to estimate the utility of state-action pairs $Q(s, a)$, where s denotes a state, a denotes an action, r denotes a reward, and α denotes the learning rate and γ denotes the discount rate.

$$Q(s, a) = Q(s, a) + \alpha [r + \gamma Q(s', a') - Q(s, a)]$$

Policy learning in RL is a powerful concept. An agent explores a partially observable environment until it learns a policy (i.e., how it should react to the environment) that maximizes its return, SRS. The representation of the state space, S, and actions, A, are critical since they are the abstraction of behaviors to be learned. In further work, the following directions could be pursued:

1. to improve the handcrafted rules for different composition,
2. to automate rules-acquisition process, and
3. to apply the approach to other genres (e.g., four part writing, jazz, etc).

In this work, we employed SARSA to generate 32-bar two-part invention pieces. By carefully selecting the representation of states, actions, rules and contexts, a complex problem such as algorithmic composition could be dealt with and reasonable output could be obtained with comparatively less effort.

References

- Somnuk Phon-Ainquanuk: Generating Tonal Counterpoint Using Reinforcement Learning. ICONIP (1) 2009: 580-589